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Resonance Method in Scattering Theory* 

BY 

EGIL A. H Y I ~ B A A S  /5 

!Chis article was originally meant to precede a second article [l], where now 
definitions and notations used here are described in more detail. This part will 
here be cut down to a minimum. 

The aim of the investigations is to replace the o d h q  treatment of the 
scattering problem by an indirect one. This can be done by providing the 
scattering potential with an adjustable numerical factor which is used as an 
eigenvalue parameter of a discrete eigenvalue problem. 

The term "resonance methad" simply alludea to the structure of the for- 
mulae. 

&7tt&E 
1. Introduction 

It is well known that in scattering problems an hmming plane wave of 
particles can be separated into waves of different angular momentum, S-, 
P- and D-waves, etc., and that each wave may be treated separately. The 
quantity governing the 
totic pham or phase 
denote it by E,(k) 
muthal quantum number 
simplicity we are here dealing 
the notation into E(k) or tr, and when possible simply 5. 

The scattering problem is given by a differential equation 

* The portion of this work done at the University of Wisconsin Theoretical Chem- 
istry Institute waa supported by Grant NsG-275-82(4180) with the National Aero- 
nautics and Space Admirat ion .  

The research carried out at the university of Florida waa partidly supported by the 
National Science Foundation. 
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with the boundary condition y(0) = 0. The function A U ( r )  is the perturbing 
or scattering potential, however of opposite sign, so that - A U ( r )  is the true 
potential energy. If the solution has the asymptotic form y(r)+sin ( k r + 5 )  
as r+ 00, 5 is the asymptotic phase. 

If the potential function does not allow for an elementary solution the 
problem is usually not easily solved directly, even though a number of var- 
iational methods (L. Hulthdn, J. Schwinger, etc.) have been developed to 
serve the purpose fairly satisfactorily. 

In  this investigation we shall try an indirect method, using the potential 
strength A as a variable eigenvalue parameter, whereas k is so fixed that 
is corresponds to a negative energy state. If k = i x  the energy is - x2. So 
it  is also for k = - i x ,  but we shall distinguish between the two values so 
that the asymptotic solutions eTxr corresponds to e*'lrr. This means that k- 
values corresponding to bound states are always on the positive imaginary 
k-axis. 

In  order not to meet with particular difficulties we shall take U(r )  to be 
positive all the way. Then the eigenvalues of A are discrete eigenvalues 
which are usually somewhat easier obtained than the asymptotic phase 
itself by direct means. The calculation of an infinite number of eigenvalues 
A = A,,, n = 1,2,  . . . , is not a serious obstacle because as n+ 00 asymptotic 
values are usually fairly easily found. 

The method was first presented a t  a meeting of the Norwegian Physical 
Society in Trondheim, May 1956, and subsequently published[2] as a 
preprint, which because of several misprints was republished a long time 
afterwards in our Institute Reports 131. 

As the investigation is presented here i t  is not much different from the 
institute report, even though former more complete. It was considered to 
use the notations introduced mainly by Jost and Kohn [6] (see references 
in ref. [SI) and adopted in recent works [4]. This was finally rejected because 
of some inconveniences and because of the uncertainty as to whether they 
are going to be the final ones [5]. 

2. Definitions and Notations 

We shall consider two particular solutions of eq. (l), u( 2 k, r ) ,  as our prin- 
cipal solutions. They are defined by their asymptotic values 

u( 2 IC, r)-+efikr as r+ 00, (2) 

and hence correspond to the Jost and Kohn functions f( T k, r ) .  They also 
differ from the notation of Ref. 3 where the exponentials are considered 
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split off such that there u( & k, r)+l. For real k the two functions are con- 
jugate and may be denoted by the shorter symbols u and u*. In the case 

u(k, r )  = u(ix, r)+e-m and hence it is u which has to be used in the eigen- 
I of complex k the shorter notation u may still be used. In particular for k = ix, 

I value equation 
I 

If we define by u( k k, r) e*'€= y2 4 iyl, 

a second set of independent solutions 

(4) 

it is seen that requiring u(k, 0 )  e'' real means yl(0) = 0. Using the abbrevia- 
tions u( & k, 0 )  = u( k k) we have 

u(k) = I u(k) I e-'€, u( - k )  = I u(k)  I e", 1 

u( & k, r) may conveniently be called amplitude functions and u( k k )  asymp- 
totic amplitudes. 

The Wronskians of the two sets of functions, defined as W{y, z} = y'z - yz', 
are seen to be 

W(u, u*} = 2ik, W{yl ,  y2} = k .  (6 1 
It follows from (4) and (6) that asymptotic values at r = 0 are 

3. Solutions by the Theory of Eigenvalues 

Provided V(r) positive in the region 0 9  r<  00, eq. (3) has an infinityof 
positive eigenvalues A,(%), n=l ,2 ,  ..., m. In the case of V(r)+Ce-m as 
r+-, e-=' may be used for a new independent variable transforming the 
fundamental region into a finite region 0 < e-=' < 1, from which it may be con- 
cluded that the eigenvalues increase quadratically with n. 

We now consider u(k) a function of A. Since u(k, 0 )  = u(k) is bound to be 
zero for any k producing a closed state eigenfunction we must have 

- 631059 
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its value for A = O  being unity. Provided the A,(%) are known for all real 
values of x and, moreover, may be taken to be analytical functions of x 

and 

u(k)= n 1-- 
n = l  Do [ An(  -ik) 

1 1 - A/A, ( ik )  E = :  2 log 
22n-1 1 - A/A,(  - ik)' 

4. Zeros and Infinities of the Asymptotic Amplitudes 

If the parameter A fixing the magnitude of the scattering potential is 
given the zeros of u(ix) are found from the equation 

A,(%) = A .  (10) 

The An(%) increase monotonically with x for positive real x .  Therefore, if 

Am(()) G A G Arn+l(O) (10 a)  

there will be a positive x-value for which A , ( x ) = A ,  and there will be 
another and higher x-value for which = A ,  and so on, the number 
of positive x-values which are zeros of u( ix)  becoming m. In  the k-plane 
these zeros k = i x  are all on the positive imaginary k-axis. 

In  the case of an exponentially decreasing potential of the asymptotic 
form ePr ,  x = e-ar may be used for a new independent variable in a limited 
region OGxGl. If U(r )  is positive all the way it is found that asymptoti- 
cally An(%) is a quadratic function in n. Since A,(%) increases with x it must 
have the asymptotic form 

An(%) = c(n+ a x )  (n + b x )  (10 b) 

with a,  b >, 0. For larger n therefore u(ix)  will have a double set of negative 
x-zeros corresponding to a double set of k-zeros on the negative imaginary 
axis. In the case of a or b being zero, there is only one such set, the other 
one being skipped away to infinity. The result hence is a finite number of 
zeros of u ( k )  on the positive imaginary axis, the number depending on the 
magnitude of A ,  and an infinite number on the negative imaginary k-axis. 

Similarly the condition for u(k) becoming infinitely large is 
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An(%) = 0. (11) 

From (10 b) we see that asymptotically the corresponding x-values are nega- 
tive and the k-values on t,he negative imaginary itxis. Moreover, the infini- 

Similarly, u( - k) has a limited number of zeros on the negative imaginary 
k-axis, all other zeros and poles being on the positive imaginary axis. The 
poles of u( - k) are by some authors called redundant zeros of AS( - k) = e-2ie 

I 
ties are simple poles except in the w e  of a = b. 

= u(k)/u( - k). 

5. Exemplifications 

Example 1. U ( r )  = A(A + 1)  a2(1 - tgh2 ar). ( 12) 

This is a particularly nice example, an Eckhardt potential decreasing 
asymptotically as e-2m and with a flat bottom of the symmetric true poten- 
tial - U(r) ,  i.e., U( - r) = U(r) .  For this reason the transformed equation (3) 

I {- a (1 -2)d - W + I Z ( A +  1) y = o  
ax ax 1 - 2  

with x = tgh ar (13 a) 

becomes extremely simple with symmetric and antisymmetric solutions in 
x or r, of which only the antisymmetric ones fulfil the requirement y(0) = 0. 
Hence, using 

A=A(A+l) (13 b) 

for eigenvalue parameter its eigenvalues are 

I The double set of poles are a t  x,= -ma and, hence, the poles of u(k)  at 

k,= - .  zma (m=1,2,  ..., -). (13 d) 

The double set of zeros of u(k) aa obtained from eq. (10) are at x =  
-a(2n-l-A) and x =  -(2n+1), or 

kn= - i a (2n-1 -4 ,  kk= -ia(2n+A) (n=1,2, ..., -). (13c) 

If 1 < A <  3 there is one zero, and if 2m- 1 < A <  2m+ 1 there are m zeros 
on the positive imaginary k-axis, all other zeros being on  the negative side. 

The asymptotic amplitude u(k)  therefore must be 
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( - ik - i)! (- E) ! 
u(k)  = ( ik A + l ) . (  ik A) 

1 - - - + - !  
2a 2 2a 2 

since the gamma functions of the nominator are accounting for the poles and 
those of the denominator for the zeros, and finally for A = 0,A = 0, its value 
is 1. By the duplication formula of the gamma function it may also be written 

In  varying A the situation is: At 1 = 0 the zeros and poles are accurately 
cancelling. As A increases the poles are kept fixed, whereas one set of the 
zeros are creeping up, the other down. For integral A there is a particular 
degeneration, the zeros and poles again cancelling except for some few of 
them on either side, for instance, 

(14 b) 

k - ia 
k + 2ia' 

(k + 2ia) (k + 4ia)' 

1 = 2 ,  U(k)=- k 
k i- ia' 

k(k -2 ia )  
( k  + ia) ( k  + 3ia)' 

1= 1, u(k)  = - 

A = 3 ,  u (k )=  1 = 4 ,  u(k)= ( k  - ia) (k  - 3ia) 

from which the law for the distribution of zeros and poles in the degen- 
erate case is easily seen. 

The amplitude function u(k,  r )  is of course easily found in the ordinary 
way as expressed in powers of S(1- tgh ar) or (1 - tgh' ar). It may be 
given in three useful forms, namely, 

ik 1 - tghar 
2 

exp (- " r )  u(k,  r) = F (  - A, A+ 1,1--, 
a a 

exp (t: - r  ) u ( k , r ) =  (1 -tZghar)-'k'a F ( - A - - , A + l - - - , l - - ,  ik ik  1-tghar  ik  
a a a 

exp t2 r )  u( E ,  r )  
U 

Putting r = 0 in (15 b) and using the formula 
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(c-l)!(c-1-u-b)! 
(c- 1 - u ) !  (c- 1 - b ) !  F(u, b, c, 1) = 

we obtain the asymptotic amplitude in the form (14 a). 

Example 2. 

This is a most interesting potential similar to the Yukawa in having a 
pole at  the origin. It is also more definite in ita results than the above 
Eckhardt potential of Example 1. Putting 

b 

A = A2, x = e-&, k = i x ,  (16 a) 

we have the eigenvalue equation 

c 

Noting the asymptotic factors 

1-e--=1-z and e ' h = s *  (17 a )  

to be split off before expanding u in a power series it is not hard to see 
that the eigenvalues of A are 

Cons-dting eq. (ll), we see that there is now only one set of poles, x = - m, or 

k,,= - ina (n=1,2  ,..., a). (17 c) 

According to eq. (10) the zeros are found from 

which gives x = a ( c -  n), kn= ia(" - n). 
n n 

L 
Again we see there are only a few zeros on the positive imaginary axis 

giving bound eigenstates. The rest, infinite in number, are on the negative 
side, as are also the poles. There is, however, no general degeneration. Even 
in t'he case of integral 1 cancelling of zeros and poles occurs only accidentally, 
even though their asymptotic distributions a8 n+ 00 have the same density. 

1 
~ 
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For the purpose of expressing u(k) by means of gamma functions eq. (17 d) 
should rather have been solved with respect to n. We therefore writ.e it in 
the form 

from which we easily obtain the asymptotic amplitude 

(2)! 
(-!!+l)! (+)! 

u(k) = 

Since for A = 0, A =  0, 1 = ik/2a, it follows that u(k) = 1. The zeros of u(k) 
are a.11 obtained from the second gamma function of the denominator by 
putting 

n (n=1 ,2 ,  ... 

which on squaring 1 gives (17 d) and (17 e). 

found to be 
If in this example we go the ordinary way our amplitude function is 

which, using (15 c), gives u(k) in the form of eq. (18). 

6. Application to  a Potential with a Singularity a t  the Origin 

The singularity of U ( r )  in Example 2 does not change the origin into a 
singular point of the wave equation. For that purpose a double-pole of 
U(r )  is needed, and as an example we shall study the potential function 

1 - tgh2 r 
tgh2 r U(r )  = - p(p + 1)- + A ( l -  tgh2 T ) .  (19) 

The most interesting feature of this potential is that if we choose 

A = (A + p)  ( A  + 1 + p) (19 a )  

the energy levels of the bound states are the same for all p and depend 
only on A. The potential is well known from the theory of molecular poten- 
tials [7] under the name of the Poschl-Teller [8] potential, however written 



Resonance Methodi n Scattering Theory 11 

in quite a different form. In molecular theory i t  may be thought of as a 
modification of the Morse potential which gives the aame energy levels, 
however a different variation of the rotational constant or mean interatomic 
distance with the vibrational quantum number. This modification is, how- 
ever, for most diatomic molecules the opposite of what is wanted when 
starting with a Morse potential, for which reason the Poschl-Teller poten- 
tial did not prove to be of much use in molecular theory. 

Introducing in the wave equation the new variables 

' 

x=tghr ,  k = i x ,  

d p(p+1)  xz it  becomes { i ( l -  22) - - ~ - - 
ax 22 1-x2 

This again may be transformed into 

d2 d 1-22 a 
(1 - 22) - - (2 + 2%) 2 - + 2(p + 1)  - - I dx 22 ax 

and finally with the new variable 

into the hypergeometric equation 

y=tghP+'r( 1 - tghz T x'2 ) v. 

The solutions v of this equation are polynomials of degree 12 - 1, 
P n = 1,2,  .. ., w,  provided 

A = A,(%) = (2n- & + x  +p)2- 4 = (2n- 1 + x+p)  (2n + x+p) .  (20e) 

t Equating this expression with (19 a) we find the x-values 

x=il+1-2n, x =  -(A+2p+2n) (21) 

is y(r)+el"l' and hence must be rejected as a bound state 
for which y(0) = 0. For negative x-values, however, the asymptotic value 

1 as r+- 
I function. 
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I n  order to be able to discuss the scattering properties of our potential 
(19) from the same viewpoint as in Examples 1 and 2 we must redefine the 
amplitude functions u( & k, r )  and asymptotic amplitudes. Again we choose 
solution yl(r) and y2(r) of eq. (20) with the properties 

y,(r)+sin (kr+ E ) ,  y,(r)+cos (kr+ E )  ( r - f m ) ,  (22)  

with the boundary condition y,(O)=O. Owing to the singularity of the 
endpoint r = 0 of the domain of integration this means that the two functions 
have the asymptotic forms 

y,(r)+c, r p + I ,  y2(r)+c2 r-" (r+O). (22 a) 

As before, the amplitude function should have the asymptotic values 
u( k k, r)+efikr* , however, in order that the asymptotic amplitudes be finite, 
we must now choose 

u(k ,  r )  = tgh" r(y, + iy,) (22 b) 

or 1 1 
yl(r) = tgh-' r - [ueiB - u* e - * E ] ,  

2i (22 c) 
y2(r )  = tgh-"' - 4 [ue't + u* e-'']. J 

The condition y,(O) = 0 now determines the phase shift formally as before 

however, for A = O  we have no more t = O  or u(k) = 1. Therefore formula 
(8 a) is fallible, which means that, although the zeros of u(k) can be found 
from (lo), the infinities of u(k) are not given by (11). The poles of u ( k ) ,  as 
might erroneously be concluded from (20 e), are not k = - i(,u + n) but as in 
Examples 1 and 2 still 

k =  -in ( n = 1 , 2  ,..., -). (22 e) 

This requires an explanation. Assume the potential U ( r )  to have the 
asymptotic form e-2ar or for simplicity e-2r as above and take e-2ar or rather 
x = e-2r as a new independent variable. Then for r = 00 or x = 0 the wave 
equation has a regular singularity with initial forms of the solution 

(23) x * ~ / 2 =  w r -  + f k r  e - e  . 
Therefore, as x approaches an integer n, the solution beginning with x-x12 
will have x " - ~ ' ~  and higher terms with coefficients of the order of magni- 
tude l/(x - n), i.e., the solution has poles in x = n, and this means that u(k) 
has poles in k = - in as stated in (22 e). 
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The former general formula (8 a) should therefore be replaced by 

O1 A,(%)-A 
u(ix)  = n=l(2n n - 1 + X )  (2n+ X )  C(n) 7 

(23 a) 

where C(n),  if needed, is some converging factor independent of x. Intro- 
I ducing A and A&) from (19 a) and (20 c) the result is 

oo (;+2tp+?&) 1 (5--+n x l + l  

u(ix) = "-I n (;+.) (E-*+.) )(l+t)-*. (23 b) 

where C(n) has been chosen so that according to the Gauss product formula 
the u(ix) can be expressed by gamma functions, namely, 

From k = isr, x = - ik, and using the gamma function duplication formula, 

2"( - ik)! ( - 4)! 
ik 1 u(k) = 

This result may be checked by the ordinary method of obtaining u(k, r )  
and u(k), using the differential equation (20 c) in which p + 1 is replaced 
by -I4 

3 

1 - tgh2 r 
y=tgh-*r( ) v .  

(25) 

(2.5 a) 

Introducing A from (19 a) it is found that 

Since 

2 

it  means that y tgh" r has the correct asymptotic form and that we may 
write 
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-(l+?hr)-" - ~ F ( _ _ _ - _  ik 2 1 2 ,u, -- 2 +2' - ik+l , l - tgh2r)  (25d) 

with the result (24) using (15 c) for F(a,  b, c,  1). 
On comparing (24) with (14 a) for CL = 1 we see that the bound states, as 

determined by the second gamma function of the denominator, are exactly 
the same, whereas there is a difference in the asymptotic phase shift amount- 
ing to 

At=arg -+- !-arg -+-+,u !. (? ;) (: ; ) 
For integral ,u this means a decrease of 

(26 a) 
k k k A t  = - arctg __ - arctg ~ - ... - arctg- 

1+2 Ai-4 1 + 2,u' 

which vanishes as k+O. As k + a ,  however, it 
A t  = - Bpn, similar to the asymptotic values 

.- f? Ju+t(r)-+sin r - p  - . ( 

approaches the value 

(26 b) 

It is of some interest to compare potentials of the type (19) themselves 
for different p-values. Beginning with p = 0 the maximum depth is a t  r = 0 
and is 1(1+ 1). If ,u is not too small we make the convenient, however 
insignificant? change of writing 

V ( r )  = [ - (%'+ (1+ p + (1 - tgh'r). 
tgh2 r 1 

The maximum depth is then found to be 

U(r,) = A2 

a t  the distance r, from the origin given by 

Using 

1 - tgh2 r 4e-2r 
2r = 4eWzr + 8e-" + . , . , tgh2r (1-e-  ) 

- - 
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we find to the relative order of magnitude P / ( A  + p + f ) 2 ,  

15 

i.e. the potent,ial is approaching the Morse potential. 
If in a similar manner we try to generalize the potentia,l of Example 2 

by an  additional term with a double pole a t  r = 0 no coinciding sets of bound 
states are obtained. 

7. Calculation of the Potential U(r) from the Phase Shift 
for Infinitesimal Perturbations 

If in eq. (9) we take A to  be small, then to the first order in A 

(=-Z A "  1 
Zin=I{A, , ( - ik)  

if for brevity we w-rite e=(Z) . A -0 

On the other hand, writing the wave equation of the former yl(r) in the form 

{g + P + AU(r) yl(r) =o I 
and combining it with the equation for sin kr, we find 

k s i n ( = A  U(r)yl(r)sinkrdr. 
f0" 

89 A+O, y(r)+sin kr and sin l+l. Hence 

and this equation can readily be converted into 

m 

P(r) = f 6 sin 2krdk, U(r) = - P'(r), P(r) = 1; U(r) dr. 
n o  

4 e-'r 
Take now the potential U(r) = 
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of Example 2, eq. (16), putting for simplicity tc= 1, we have from (17 b) 
An(%) = n(n + x )  and from (28 a) 

From (29 c), transforming half of the integral into the region - 03 < k < 0, 
we obtain 

Closing the path of integration in the upper half plane and contracting i t  
into circles around the poles k = in of the second term, the result is 

4 e ~ ~ '  
- P'(r) = U(r )  = ~ 1 - e-2*' 

Similarly, in the case of Example 1 with tc = 1 and 

U ( r )  = 1 - tgh2 r ,  An(%) = (2n - 1 + x) (2n  + x ) ,  (31) 

1 1 e2i kr  dk 
7c n = l  (2n -  1 - i k )  (2n- i k ) -  (2%- 1 + i k )  (2n+ik )  

(31 a) 
For the latter term in the bracket we write 

1 1 
[ k - ( 2 n - l ) i ] [ k - 2 n i ]  i k - ( Z n - l ) i  k - 2 n i  

and, on proceeding as above, we obtain 

8. Derivation of the Coulomb Phase Shift by Confluence 

In  the case of a pure Coulomb potential it is well known that the solutions 
of the wave equation are confluent hypergeometric functions, which may 
fairly easily be studied directly. If we write 

2 
U ( r )  = - r 
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for the standard potential function, using AU(r)  in the wave equation, it 
is seen, however, that it can be obtained from 

by putting A and making a+O. (32 b) a 

In this way we are able to use all results from the former treatment of the 
potential in Example 2. 

The apparently hardest point to settle in this way is the occurrence of 
the r-dependent part of the phase shift (A/k) log  2kr. But this is in the 
Coulomb case obtained as an asymptotic part of the solution of the equation 

{ $ + 2 ik dr + u e-' Icr = 0 2Al 
using only the two last terms, which gives a e-"' N i(A/k) log r. 

value 
The amplitude function u(k, r )  may therefore be defined by its asymptotic 

(r+f=), (33) u(k, r ) + e i W + 4 k  log 2kr) 

and the asymptotic amplitudes as before by u( 2 k) = u( & k, 0). Then writing 

y l ( r ) = 7 { u ( E , r ) e ' c - ~ (  1 - k,r)e-'€}, (33 a) 2d 

y,(r)-tsin(kr+ ( A / k )  log 2kr f  6)  as r+m.  (33 b) 

Requiring y(0) = O  we obtain as before the r-independent part of the phase 
shift as 

It should be noted that the argument kr in the logarithm is suggested in a 
natural way by introducing the variable kr, which also leads to A / k  as a 
natural constant of the equation. The factor 2 in the logarithm must, how- 
ever, be justified separately. 

Using the equation 

in a similar manner as (32 c) we may argue that the asymptotic factor 
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as obtained from the two last terms of eq. (34) should be taken into the 
asymptotic expression for u(k,  r) .  

As long as we are dealing with finite tc the factor 1 - e-2ar is 1 as r+ 00 

so it means that we have multiplied our former u(k, r ) ,  and hence also u(k), 
by ( k / ~ ) ~ ~ ' ~ .  We therefore have to change expression (18) into 

i k  A As tc+O we find l=-L-  
2cr ' i k  

and (34 d) 

From Stirling's formulae for asymptotic values of gamma functions i t  is 
found that for large n, n! / (n  + E ) !  = n-'. Hence 

and arg u(k) = - arg r:) !. 

9. The Coulomb Scattering by the Resonance Method 

The Coulomb potential U(r )  = 2 / r  has an infinity of bound states, 

1 
n2 

(36) E = k 2 =  - x 2 -  _ -  ( n = l  2 n- 7 , * * ' ,  -). n n  

Take k = i x  to be given and A an eigenvalue parameter, the equation 
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has the eigenvalues A,, = nx (n= 1,2, ..., -)  (37 a) 

and the eigenfunctions 

i 
with the asymptotic values 

y,,(O) = 0, y,,(r)+ePr( - 2xr)". (37 c) 
1 

Replacing now x by ik and n by A / x  = i A / k  we define u(k, r) to be the 
corresponding solution with the asymptotic value 

, (35) u(k,  r )  jexkr+(4k) 1oog 2kr) 

dropping the factor 

As usual we define two real  solution^ of the wave equation 

1 
2 2  by yl = -. {u(k, r) e'€ - u( - E ,  r) eCiE)+sin log 2kr + 5 )  (39 a) 

yz = 4 {u(k, r) e" + u( - k, r) e-it}+cos 

and obtain from the boundary condition y,(O) = 0 

The bound states require u(k)  = 0 for some positive imaginary k. It follows 
that u(k) must be expressible as an infinite product containing the factors 

It is clear also that u(k)  has no poles, contrary to the case of an expo- 
nential potential. The poles of u(E) in eq. (=), for instance, which are 
k =  - ina, are creeping upwards in direction of the origin as a+O. More- 
over, according to (17 e) and (32 b) they are killed by the half-set of zeros, 
n = ( A / a ) f  + m, k = - i (Aa)* - ima, which as a+O have the same distribution 
k =  - imu. The other half-set of zeros, n< A / a * ,  are all of them above the 
origin. As a 4 0  they become infinite in number and are distributed its 

1 - A/A, (  - ik ) .  

k,, = iA/n.  (39 d) 
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Since u ( k )  has only zeros and no infinities we need not worry about the 
converging factors in the above-mentioned infinite product but may write 
a t  once 

(40 a) - - - n  ( n = 1 , 2 ,  ..., m), 
A since from - 

ik  

we obtain all zeros of (39 d). Unknown is still the factor C ( A / k ) ,  which from 
the transformation properties of the wave equation, is seen to be a function 
of A / k .  

Now the absolute value I u ( k )  I is easily found from 

which follows as before from (39 b) and the unaltered value k of the Wron- 
skian. On the other hand, the asymptotic value of (37 b) as r+O is 

y,,(r+O) =2ikr .n!  =2ikr.  g)! 
and this has to be divided by 2i from (39 a), by exp ( 
and finally multiplied by 

from eq. (40). Hence 

which gives from (40 b) 

(40 c) 

+ n A / k )  from (38 a), 

Hence C ( A / k )  = exp ( - &zA/k) and (40) and (35) are in accordance also 
with respect to the numerical factor. 
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The phase shift is independent of this real factor and could have been 
given from (40) without additional considerations as 
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